Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Yi Chuan ; 46(4): 333-345, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632095

RESUMEN

China has a high dependence on soybean imports, yield increase at a faster rate is an urgent problem that need to be solved at present. The application of heterosis is one of the effective ways to significantly increase crop yield. In recent years, the development of an intelligent male sterility system based on recessive nuclear sterile genes has provided a potential solution for rapidly harnessing the heterosis in soybean. However, research on male sterility genes in soybean has been lagged behind. Based on transcriptome data of soybean floral organs in our research group, a soybean stamen-preferentially expressed gene GmFLA22a was identified. It encodes a fasciclin-like arabinogalactan protein with the FAS1 domain, and subcellular localization studies revealed that it may play roles in the endoplasmic reticulum. Take advantage of the gene editing technology, the Gmfla22a mutant was generated in this study. However, there was a significant reduction in the seed-setting rate in the mutant plants at the reproductive growth stage. The pollen viability and germination rate of Gmfla22a mutant plants showed no apparent abnormalities. Histological staining demonstrated that the release of pollen grains in the mutant plants was delayed and incomplete, which may due to the locule wall thickening in the anther development. This could be the reason of the reduced seed-setting rate in Gmfla22a mutants. In summary, our study has preliminarily revealed that GmFLA22a may be involved in regulating soybean male fertility. It provides crucial genetic materials for further uncovering its molecular function and gene resources and theoretical basis for the utilization of heterosis in soybean.


Asunto(s)
Glycine max , Infertilidad Masculina , Masculino , Humanos , Plantas , Polen/genética , Fertilidad , Infertilidad Vegetal/genética , Regulación de la Expresión Génica de las Plantas
2.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1005-1013, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36872271

RESUMEN

The ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to conduct the qualitative analysis of the monoterpene chemical components from Paeoniae Radix Rubra. Gradient elution was performed on C_(18) HD(2.1 mm×100 mm, 2.5 µm) column with a mobile phase of 0.1% formic acid(A) and acetonitrile(B). The flow rate was 0.4 mL·min~(-1) and the column temperature was 30 ℃. MS analysis was conducted in both positive and negative ionization modes using electrospray ionization(ESI) source. Qualitative Analysis 10.0 was used for data processing. The identification of chemical components was realized by the combination of standard compounds, fragmentation patterns, and mass spectra data reported in the literature. Forty-one monoterpenoids in Paeoniae Radix Rubra extract were identified. Among them, 8 compounds were reported in Paeoniae Radix Rubra for the first time and 1 was presumed to be the new compound 5″-O-methyl-galloylpaeoniflorin or its positional isomer. The method in this study realizes the rapid identification of monoterpenoids from Paeoniae Radix Rubra and provides a material and scientific basis for quality control and further study on the pharmaceutical effect of Paeoniae Radix Rubra.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Liquida , Espectrometría de Masas , Monoterpenos
3.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3726-3739, 2020 Aug.
Artículo en Chino | MEDLINE | ID: mdl-32893565

RESUMEN

This study is to explore the effect of Qingfei Paidu Decoction(QPD) on the host metabolism and gut microbiome of rats with metabolomics and 16 S rDNA sequencing. Based on 16 S rDNA sequencing of gut microbiome and metabolomics(GC-MS and LC-MS/MS), we systematically studied the serum metabolites profile and gut microbiota composition of rats treated with QPD for continued 5 days by oral gavage. A total of 23 and 43 differential metabolites were identified based on QPD with GC-MS and LC-MS/MS, respectively. The involved metabolic pathways of these differential metabolites included glycerophospholipid metabolism, linoleic acid metabolism, TCA cycle and pyruvate metabolism. Meanwhile, we found that QPD significantly regulated the composition of gut microbiota in rats, such as enriched Romboutsia, Turicibacter, and Clostridium_sensu_stricto_1, and decreased norank_f_Lachnospiraceae. Our current study indicated that short-term intervention of QPD could significantly regulate the host metabolism and gut microbiota composition of rats dose-dependently, suggesting that the clinical efficacy of QPD may be related with the regulation on host metabolism and gut microbiome.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Bacterias/clasificación , Cromatografía Liquida , Metabolómica , Ratas , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA